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Abstract—A subproblem technique is applied on dual formu-
lations to the solution of thin shell finite element models. Both
the magnetic vector potential and magnetic field formulations are
considered. The subproblem approach developed herein couples
three problems: a simplified model with inductors alone, a thin
region problem using approximate interface conditions, and a
correction problem to improve the accuracy of the thin shell
approximation, in particular near their edges and corners. Each
problem is solved on its own independently defined geometry and
finite element mesh.

I. INTRODUCTION

The solution by means of subproblems provides clear ad-
vantages in repetitive analyses and can also help in improving
the overall accuracy of the solution [1], [2]. In the case of thin
shell (TS) problems the method allows to benefit from previous
computations instead of starting a new complete finite element
(FE) solution for any variation of geometrical or physical
characteristics. Furthermore, It allows separate meshes for
each subproblem, which increases computational efficiency.

In this paper, a problem (p = 1) involving massive or
stranded inductors alone is first solved on a simplified mesh
without thin regions. Its solution gives surface sources (SSs)
for a TS problem (p = 2) through interface conditions (ICs),
based on a 1-D approximation [3], [4]. The TS solution is then
corrected in a problem (p = 3) via SSs and VSs, respectively
suppressing the TS representation and adding the actual vol-
ume representation, to take the actual field distribution of the
field near edges and corners into account, which are poorly
presented by the TS approximation. The method is validated
on a practical test problem using a classical brute force volume
formulation.

II. DEFINITION OF THE SUBPROBLEM APPROACH

A. Canonical magnetodynamic or static problem
A canonical magnetodynamic or static problem p, to be

solved at step p of the subproblem approach, is defined in a
domain Ω, with boundary ∂Ωp = Γp = Γh,p ∪Γb,p. Subscript
p refers to the associated problem p. The equations, material
relations and boundary conditions (BCs) of the subproblems
(p = 1, 2, 3) are:

curlhp = jp , div bp = 0 , curl ep = −∂tbp , (1)

hp = µ−1
p bp + hs,p , jp = σpep + js,p , (2)

n× hp|Γh,p
= jsu,p , n · bp|Γb,p

= bsu,p , (3)

n× ep|Γe,p⊂Γb,p
= ksu,p , (4)

where hp is the magnetic field, bp is the magnetic flux density,
ep is the electric field, js,p is the electric current density, µp
is the magnetic permeability, σp is the electric conductivity
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and n is the unit normal exterior to Ωp. In what follows the
notation [·]γp = |γ+

p
− |γ−

p
expresses the discontinuity of a

quantity through any interface γp (with sides γ+
p and γ−p ) in

Ωp, defining interface conditions (ICs).
The fields hs,p and js,p in (2) are VSs in the subprob-

lem approach which can be used for expressing changes of
permeability or conductivity (via hs,p and js,p, respectively).
The fields jsu,p, bsu,p and ksu,p in (3) and (4) are SSs and
obtained from previous problems.

B. Constraints between subproblems
The constraints for the problems (p = 1, 2, 3) are respec-

tively SSs and VSs. SSs are defined via the BCs and ICs
of impedance-type boundary conditions (IBC). The TS model
[4] has to be written as a subproblem following the already
calculated inductor source field from problem (p = 1). The
b-formulation uses a magnetic vector potential a = ac + ad
(such that curla = b). A similar decomposition is done for the
h-formulation, with h = hc + hd. Fields ac, hc and ad, hd
are respectively continuous and discontinuous through the TS.
The weak b- and h-formulations involve the SSs in surface
integral terms (p = 2), respectively

〈[n× h2]γ2 ,a
′
c + a′d〉γ2 , 〈[n× e2]γ2 ,h

′
c + h′d〉γ2 (5a-b)

with ad and hd defined as equal to zero on the side γ−2 of
the shell and γ = γ±1 = γ±2 ; a′d , h′d , a′c and h′c are test
functions. To explicitly express the field discontinuities, (5a-b)
are rewritten:

〈[n× h2]γ2 ,a
′
c〉γ2+ 〈n× h2,a

′
d〉γ2+ (6)

〈[n× e2]γ2 ,h
′
c〉γ2+ 〈n× e2,h

′
d〉γ2+ (7)

The involved tangential fields in (6) and (7) are given by
the TS model (p = 2) but some have to be corrected. The
discontinuities in the first terms do not need any correction
because solution (p = 1) presents no such discontinuities,
i.e. [n× h1]γ1 = 0 and [n× e1]γ1 = 0. The tangential fields
in the second terms have to be corrected with the opposed
of the tangential contribution from solution (p = 1), i.e.
−n× h1 and −n× e1. The resulting surface integral terms
are correctly expressed via the weak formulations of problem
(p = 1), thus rather via volume integrals, i.e.

〈n× h1,a
′
d〉γ+

2
= −(µ−1

1 curla1, curla′d)Λ+
1
− (σ1∂ta1,a

′
d)Λ+

1

(8)
〈n×e1,h

′
d〉γ+

2
= −(µ−1

1 ∂ths,h
′
d)Λ+

1
− (µ−1

1 ∂th1,h
′
d)Λ+

1
(9)

with the volume integrals limited to a single layer of FEs
Λ+

1 touching γ+
2 = γ+

1 , because they involve only the traces
n× a′d|γ+

2
and n×h′d|γ+

2
. Indeed, changing from µ2 and σ2

in a given subregion for TS problem (p =2) to µ3 and σ3 for
volume problem (p=3) leads to the associated VSs

hs,3 = (µ−1
3 − µ

−1
2 )b2 , js,3 = (σ3 − σ2)e2 . (10)
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Once obtained, the TS solution (p = 2) is then corrected by
problem (p = 3) that overcomes the TS assumptions [4]. It has
to suppress the TS representation via SSs opposed to TS ICs,
and to add the volumic shell via VSs that account for volumic
change of µp and σp in problem (p = 3) that characterized
the ambient region (µ2 = µ0, µ3 = µvolume, σ2 = 0 and
σ3 = σvolume). This correction will be shown to be limited to
the neighborhood of the shell, which allows to benefit from a
reduction of the extension of the associated mesh.

III. APPLICATION EXAMPLE

The test problem is a shielded induction heater. It comprises
two inductors (stranded or massive), a plate (µr,plate = 100,
σplate = 1 MS/m) in the middle, and two screens (µr,screen =
1, σscreen = 37.7 MS/m) (Fig. 1). It is first considered
via a stranded inductor model (Fig. 2, top left, a1), adding
a TS FE model (Fig. 2, bottom left, a2) that does not
include the inductor anymore. Finally, a correction problem
replaces the TS FEs with actual volume FEs (Fig. 2, top
right, a3). The complete solution is shown as well (Fig. 2,
bottom right, a1 + a2 + a3). Errors on the magnetic flux
with the TS model between classical solution (FEM) and
(p = 1 + 2) for both b- and h-formulations are shown in
(Fig. 3a); they can nearly reach 85% in the end regions of
the plate. Accurate local corrections are checked to be close
to the complete volume FE solution (Fig. 3b). Significant
TS errors are achieved through the relative correction of the
eddy current as well (Fig. 4), up to 50% and 60% near the
screen ends for (δskindepth = 0.919 mm, µr,plate = 100, f
= 3kHz) and (δskindepth = 0.65 mm, µr,plate = 200, f =
3kHz) respectively. The proposed technique for TS FE and
correction have been presented via a subproblem approach. It
leads to accurate eddy current and magnetic flux distributions
at the edges and corners of thin regions. All the steps of the
method will be detailed, illustrated and validated in extended
paper for both b- and h- formulations in 2D and 3D cases.

Fig. 1. Shielded induction heater (d = 2÷6mm, Lpl = 2m, Ls = 2m+2d
, Hs = 400mm, Cdz = 800mm, Cdy = 10mm, Cy = 200mm, Cx =
50mm)
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Fig. 2. Flux lines (real part) for the stranded inductor model (a1), thin shell
added (a2), correction solution (a3) and the total solution (a1+a2+a3) with
the different meshes used (f = 1 kHz, µr,plate = 100, σplate = 1MS/m).
Projection of inductor solution (aproj ,SS) in the TS, and of TS solution
(aproj ,VS) in the volumic shell.
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Fig. 3. Errors on the magnetic flux before correction (a) and after correction
(b) along the plate for different thicknesses (µr,plate = 100, σplate =
1MS/m and f =1kHz).
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Fig. 4. Relative correction of the eddy current along the screen for effects
of µr and frequency f (σplate = 1MS/m).


